
Large-Scale Nonlinear Optimization
in Circuit Tuning

Andreas Wächter
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Circuit Tuning
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Digital Circuit
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Digital Circuit

Basic building blocks:
Transistors (switches); Gates (logical units)

Connected by wires
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Digital Circuit
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Signals arrive at the inputs, pass through the circuit, and leave
at the outputs
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Digital Circuit

Can change the “speed” of a gate by changing the widths of its
transistors (PFETs and NFETs)
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Circuit Tuning

Want to optimize aspects of the digital circuit
Delay of signals
Area requirement
Power consumption
Combination of above

by changing widths of transistors

Often, overall circuit too large (CPU has few 100 million transistors)

Split into “macros” and fix transistors −→ suboptimal solutions

Currently, we can tune circuits with up to 71,022 transistors
(19,576 independent)

Strong incentive to be able to tune larger circuits more quickly
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Mathematical Formulation (Static Timing)

Circuit
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ATj = max{ATi + dij : i ∈ input(j)}

Delays are functions of transistor widths:

dij = dij(wj , wnext(j))
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Optimization Problem (Delay Minimization)

min
AT,w

,s,z

max{ATi : i ∈ PO}

s.t. ATj = max{ATi + dij(wj , wnext(j)) :

i ∈ input(j)}

sj ≥ sij(wj , wnext(j), si) i ∈ input(j)
∑

Aiwi ≤ Amax

Ci(w) ≤ Cmax
i i ∈ PI

βmin
i ≤

wPFET
i

wNFET
i

≤ βmax
i i ∈ G

wmin ≤ w ≤ wmax

, smin ≤ s ≤ smax
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Simulation of a Gate
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tt
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it = g(w)f(vGS , vDS)

ic = C(wnext)
dv
dt

System of differential and algebraic equations:
Conservation laws
(Parasitic) capacitancies: Include dv/dt terms
I-V characteristics for conducting devices
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Simulation of a Gate - Numerical Methods

“Traditional approach”
Solve DAE system by standard integration method
Step size control (in time)
Solve nonlinear system of equations

Need to evaluate I-V characteristic functions
and its gradients (expensive)

PSfrag replacements
I

V
Sensitivities expensive

SPECS (Visweswariah, 1991)

Replace I-V characteristics by piecewise constant
approximations

PSfrag replacements
I

V
Cheap table lookups
i piecewise constant
v piecewise linear
Very simplified numerics
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Simulation with SPECS
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SPECS

“Event-driven” simulator (discretize in i instead of time)

Very fast (“local updates”, simple algebraic operations)

Derivatives (in direct or adjoint approach) computed with little overhead

Up to 5% timing inaccuracy

Circuits with several 100,000 transistors simulated

Here, only small circuits (gates) are simulated
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Properties of Optimization Problem

The nonlinear functions dij and sij are computed by simulation

Computationally expensive
First derivatives available
Numerical noise (from simulation)

Many variables and many degrees of freedom

After optimization, transistor widths are snapped to grid
Do not need highly accurate solution

Alternative approach: Dynamic Tuning
Simulate entire circuit at once
Need to be given “input sequence”
more flexible; less pessimistic (+)
Requires very good knowledge of circuit (−)
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EinsTuner

IBM-internal implementation

Original optimization engine: Lancelot (Conn, Gould, Toint)

Lancelot had to be customized (handle noise; made aggressive)

Preprocessing (Pruning)

Used for the design of every custom digital chip in IBM
15% gain in speed over carefully hand-tuned circuits
Designers can now concentrate on other (non-tuning) tasks

New optimization engine: IPOPT
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IPOPT
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Problem Statement

min
x∈Rn

f(x)

s.t. c(x) = 0

xL ≤ x ≤ xU

x Variables
f(x) : R

n −→ R Objective function
c(x) : R

n −→ R
m Equality constraints

xL ∈ (R ∪ {−∞})n Lower bounds
xU ∈ (R ∪ {∞})n Upper bounds

Functions f(x) and c(x) sufficiently smooth (usually C2)

General inequality constraints

d(x) ≤ 0
can be reformulated as

d(x) + s = 0, s ≥ 0
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Barrier Methods

min
x∈Rn

f(x)

s.t. c(x) = 0

x ≥ 0

↓

min
x∈Rn

f(x)−µ
n
∑

i=1

ln(x(i))

s.t. c(x) = 0

Barrier Parameter: µ > 0
Idea: x∗(µ) → x∗ as µ → 0.

Solve a sequence of barrier problems
to increasingly tighter tolerances

Fiacco, McCormick (1968)

Interior point NLP algorithms
El-Bakry, Tapia, Tsuchiya, Zhang (1996)

Benson, Shanno, Vanderbei (1997/2003)
[LOQO]

Yamashita (1998)

Forsgren, Gill (1998)

Byrd, Gilbert, Hribar, Nocedal, Waltz
(1999/2003) [KNITRO]

W, Biegler (1999/2004) [IPOPT]

Ulbrich, Ulbrich, Vicente (2000)

Gould, Orban, Toint (2003) [SUPERB]

etc.
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Computation of Search Direction

Barrier Problem (fixed µ)

min
x∈Rn

ϕµ(x) := f(x) − µ
∑

ln(x(i))

s.t. c(x) = 0

Optimality Conditions

∇ϕµ(x) + ∇c(x)λ = 0

c(x) = 0

(x > 0)

Apply Newton’s Method

[

Wk ∇c(xk)

∇c(xk)T 0

](

∆xk

∆λk

)

= −

(

∇ϕµ(xk) + ∇c(xk)λk

c(xk)

)

Here:

Wk ≈ ∇2
xxLµ(xk, λk)

Lµ(x, λ) = ϕµ(x)+ c(x)T λ

Use primal-dual approach

Matrix becomes very ill-conditioned

Need to ensure descent properties
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Line Search

Need to find αk ∈ (0, 1] to obtain new iterates

(xk+1, λk+1) = (xk, λk) + αk (∆xk, ∆λk)

1. Keep xk positive (“fraction-to-the-boundary rule”):
Determine largest ατ

k ∈ (0, 1] such that (τ ≈ 0.99)

xk + ατ
k∆xk ≥ (1 − τ)xk > 0

2. Backtracking line search with αk = ατ
k, 1

2ατ
k, 1

4ατ
k, . . . to ensure global

convergence (to first-order optimal point)

Line search filter method
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A Line Search Filter Method

Fletcher, Leyffer (1998), . . .

Alternative to merit functions

Idea:
min ϕµ(x)

s.t. c(x) = 0

min θ(x) min ϕµ(x)

PSfrag replacements

θ(x)=‖c(x)‖

ϕµ(x)

(θ(xk),ϕµ(xk))

(0
,ϕ

µ
(x

∗
))

γθ(xk)

γθ(xlL
)

γθ(xlR
)
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A Line Search Filter Method

Need to avoid cycling

⇓

Store some previous
(θ(xl), ϕµ(xl)) pairs in Filter

PSfrag replacements

θ(x)=‖c(x)‖

ϕµ(x)

(θ(xk),ϕµ(xk))

(0
,ϕ

µ
(x

∗
))

γθ(xk)

γθ(xlL
)

γθ(xlR
)
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IPOPT

Implemented as IPOPT (Fortran 77 / C) [soon C++]

Compares well with other NLP solvers as general purpose code

Available as open source from COIN-OR
http://www.coin-or.org/Ipopt

Includes interfaces to AMPL and CUTEr/SIF [soon Matlab, GAMS]

Is available at Argonne’s NEOS Server

Used for
Dynamic optimization (discretized DAE constraints)
Nonlinear model predictive control
Parameter estimation
MPCC (Raghunathan, Biegler, 2004)
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Circuit Tuning + IPOPT
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Integration of IPOPT in EinsTuner
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min
AT,w

ATlatest

s.t. ATlatest ≥ ATi

ATj ≥ ATi + dij(wi)

. . .

wmin ≤ w ≤ wmax

Approximate 2nd derivatives with
limited-memory BFGS

Factorize linear system with WSMP
(Gupta), a sparse direct parallel solver

Overall faster and more robust than
previous optimization engine

Released into production

Next slide:

51 benchmark problems
(n=1,261,. . . ,161,701)
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Breakdown of CPU time — Lancelot
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Breakdown of CPU time — Ipopt
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Conclusion

Circuit Tuning
Large-scale nonlinear optimization problem
Gate simulation by event-driven simulator SPECS
Used for the design of every custom digital circuit at IBM

IPOPT
Barrier method
Line search filter method
Good practical performance as general purpose NLP solver
Increased performance in EinsTuner and allows parallel version

http://www.coin-or.org/Ipopt
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